# USING TDL FOR STANDARDISED TEST PURPOSE DEFINITIONS





Philip Makedonski, Ilie-Daniel Gheorghe-Pop, Axel Rennoch, Finn Kristoffersen, Boštjan Pintar, Andreas Ulrich

IEEE QRS/STV, 13th December 2020, Macau (China)





### OUTLINE



- Our Context
- ETSI Testing approach
  - TDL
  - TTCN-3
- Application samples within ETSI
  - TC INT projects
  - TC MTS standardisation











- ETSI is a leading <u>standardisation organisation</u> for Information and Communication Technology (ICT) standards fulfilling European and global market needs.
- ETSI test specifications are developed according to the well-proven methodology defined in ISO/IEC 9646.
   This <u>framework</u> recommends that the test specifications include:

Test Purposes, Test Descriptions and Test Cases.

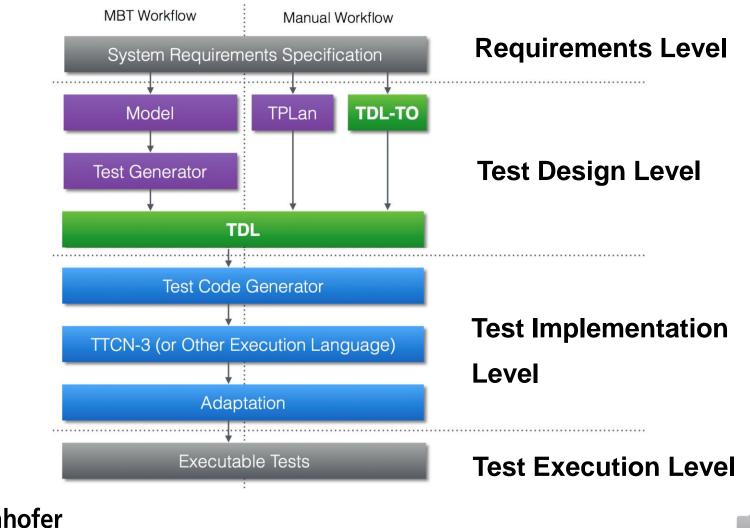




#### ETSI TC MTS

- > Technical Committee "Methods for Testing and Specification"
- Working Group TDL provides and oversees roadmap for further development of TDL and the TDL open source project
- Working Group TST develops IoT test catalogues and specifications (not covered elsewhere)
  - The **types of testing** include conformance, interoperability, security and performance testing
  - The initial technical **focus** is:
    - loT network layer (communication protocols, node connectivity, edge computing etc.),
    - Basic security of IoT devices

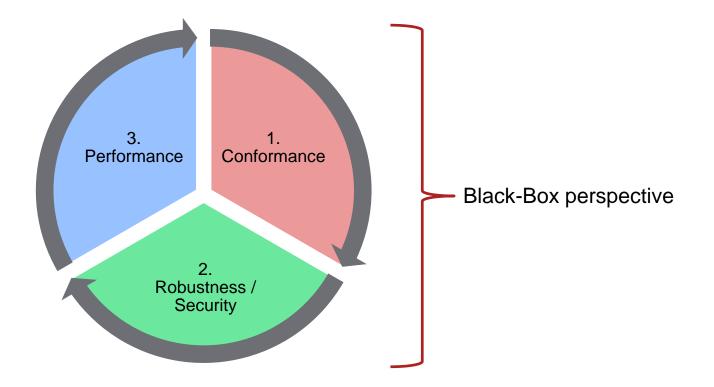









#### **ETSI TESTING APPROACH**


TEST DESCRIPTION LANGUAGE





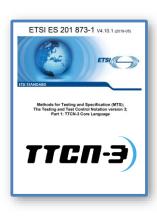
#### **QUALITY ASPECTS**










### **ETSI TEST LANGUAGE STANDARDS**

# **Test Description Language**

- Design, documentation, representation of formalised test descriptions
- Scenario-based approach

# **Testing and Test Control Notation**

- Specification and implementation of all kinds of black-box tests
- Component-based approach











### **TEST PURPOSE SPECIFICATION, SAMPLE MQTT**



- 1) Test configurations
- 2) Test Suite Structure
- 3) Test purpose (catalogue)
- 4) Test implementation (TTCN-3)

| TP Id              | TP_MQTT_Broker_CONNECT_001                                                                            |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Objective     | The IUT MUST close the network connection if fixed header flags in CONNECT Control Packet are invalid |  |  |  |  |
| Reference          | [MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]                                        |  |  |  |  |
| PICS Selection     | PIC_BROKER_BASIC                                                                                      |  |  |  |  |
| Initial Conditions |                                                                                                       |  |  |  |  |

#### Expected Behaviour

ensure that {
 when {
 the IUT receives a CONNECT message containing
 header\_flags indicating value '1111'B;
 } then {
 the IUT closes the TCP\_CONNECTION
 }
}
Final Conditions





#### **TDL-TO – TEST OBJECTIVE SPECIFICATION**



- Informal text specification (semi-structured)
- Simple description structure (event occurrence sequences)
- Global keyword definitions
   (domain specific)
- Single test observation (for pass/fail verdict criteria)





#### **TTCN-3 – THE TEST EXECUTION LANGUAGE**

1) Test configurations


2) Test Suite Structure

3) Test purpose (catalogue)

4) Test implementation (TTCN-3)

#### Did you know that YOUR PHONE...











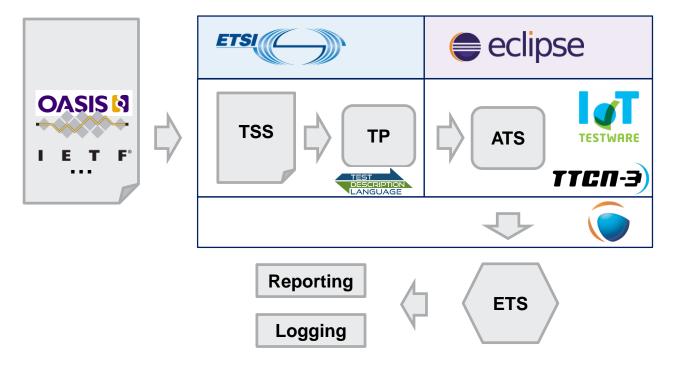
#### **APPLICATION: INTEROPERABILITY TESTS**



- Technical Committee "Core Network and Interoperability Testing (INT)"
- Specialist/Testing Task Forces on "Voice and video services over LTE"
  - ✓ For multiple interfaces of the identified test configurations
  - Packages with common
     domain definitions (library concept)
  - ✓ More than 300 TDL-TO test purposes
  - ✓ TDL Open Source Project (TOP) tools

Configuration { Interface Type defaultGT accepts DiameterMessage; Component Type DiameterComp with gate g of type defaultGT

Test Configuration CF\_VxLTE\_INT containing SUT component EPC\_PGW\_A of type DiameterComp SUT component EPC\_PCRF\_A of type DiameterComp SUT component S\_CSCF\_A of type DiameterComp SUT component I\_CSCF\_A of type DiameterComp SUT component P\_CSCF\_A of type DiameterComp SUT component HSS\_A of type DiameterComp SUT component EPC\_MME\_A of type DiameterComp SUT component IMS\_AS\_A of type DiameterComp SUT component IMS\_AS\_A of type DiameterComp connection between EPC\_MME\_A.g and HSS\_A.g connection between EPC\_PGW\_A.g and EPC\_PCRF\_A.g connection between HSS\_A.g and S\_CSCF\_A.g connection between HSS\_A.g and I\_CSCF\_A.g connection between IMS\_AS\_A.g and HSS\_A.g


Test Configuration CF\_VxLTE\_RMI containing SUT component EPC\_PGW\_B of type DiameterComp SUT component EPC\_PCRF\_A of type DiameterComp SUT component EPC\_PCRF\_B of type DiameterComp SUT component P\_CSCF\_B of type DiameterComp SUT component HSS\_A of type DiameterComp SUT component EPC\_MME\_B of type DiameterComp connection between EPC\_MME\_B.g and HSS\_A.g connection between EPC\_PGW\_B.g and EPC\_PCRF\_B.g connection between EPC\_PCRF\_A.g and EPC\_PCRF\_B.g connection between EPC\_PCRF\_B.g and P\_CSCF\_B.g

Fraunhofer

}// End of Configuration section

#### **APPLICATION: IOT-TESTWARE – THE TWO PILLARS**





Legend: TP: Test Purpose TSS: Test Suite Structure

ATS: Abstract Test Suite ETS: Executable Test Suite SUT: System Under Test





| Work Item Monitoring - MTS TST   |                 |                            |                                   |                          |               |  |  |
|----------------------------------|-----------------|----------------------------|-----------------------------------|--------------------------|---------------|--|--|
| 7 Wis, W                         | /ork in progres | s, displaying 1 to 7       | Disp                              | lays 30 🗸                | ]             |  |  |
| Work item number                 | Version         | Current status             | Next status                       | Rapporteur name          |               |  |  |
| MTS TST                          |                 |                            |                                   |                          |               |  |  |
| DTS/MTS-TST8 (TS 103 646)        | å 0.1.1         | I TB approval (2020-11-02) | Draft receipt by ETSI Secretariat | Hackel Sascha            | IEC 62443-4-2 |  |  |
| DTS/MTS-TSTCoAP-1 (TS 103 596-1) | 🛓 0.1.1         | Stable draft (2020-09-07)  | Final draft for approval          | Hackel Sascha            |               |  |  |
| DTS/MTS-TSTCoAP-2 (TS 103 596-2) | <b>≜</b> 0.1.0  | Stable draft (2020-09-08)  | Final draft for approval          | Hackel Sascha            | СоАР          |  |  |
| DTS/MTS-TSTCoAP-3 (TS 103 596-3) | a 0.1.0         | WG approval (2020-11-20)   | TB approval                       | Gheorghe-Pop Ilie-Daniel |               |  |  |
| DTS/MTS-TSTMQTT-1 (TS 103 597-1) | a 0.1.2         | I TB approval (2020-11-02) | Draft receipt by ETSI Secretariat | Pintar Bostjan           |               |  |  |
| DTS/MTS-TSTMQTT-2 (TS 103 597-2) | a 0.1.0         | Stable draft (2020-09-04)  | Final draft for approval          | Pintar Bostjan           | MQTT          |  |  |
| DTS/MTS-TSTMQTT-3 (TS 103 597-3) | a 0.1.4         | MG approval (2020-11-20)   | TB approval                       | Gheorghe-Pop Ilie-Daniel |               |  |  |

https://portal.etsi.org/tb.aspx?tbid=860&SubTB=860





TEST DESCRIPTION LANGUAGE

#### **BENEFITS OF TDL AS A TEST SPECIFICATION LANGUAGE**

- ✓ Abstract → Keeps you focused on what to test
- ✓ Standardised → Helps you to produce *repeatable* results independently from a chosen certain tool or tool provider



- ✓ Application focus → Wide range of features for today's interconnected, concurrent, embedded, real-time systems
- ✓ Semi-formal → Helps you to keep test specifications consistent over evolving systems (meta-modelling supported static code analysis)
- ✓ Multiple syntaxes → Provide test specifications in a language that different stakeholders understand best (graphical, textual, other)
- ✓ Tool support → The TDL Open source Project (TOP) offers tool support for the use of TDL





#### **SUMMARY & OUTLOOK**

- ✓ Standardised test purposes
  - Used in multiple <u>domains</u>:
     e.g. mobile, access/core networks, ITS
  - Test types, e.g. conformance, interop, security
- ✓ Advanced testing technology:
  - Used for <u>certification</u>:
     e.g. UMTS, LTE, 5G, oneM2M
- ✓ ETSI continues maintenance and evolution
  - TDL: https://tdl.etsi.org/
  - TTCN-3: http://www.ttcn-3.org/















#### Partially funded by

- ✓ ETSI in the context of the STF projects 454, 476, 492, 522, 574 and 577
- ✓ German Federal Ministry for Economic Affairs and Energy (IoT-T project)

# Thank you for your attention!

<u>makedonski@cs.uni-goettingen.de</u> <u>ilie-daniel.gheorghe-pop@fokus.fraunhofer.de</u> <u>axel.rennoch@fokus.fraunhofer.de</u> <u>finn@cinderella.dk</u> <u>pintar@sintesio.org</u> <u>andreas.ulrich@siemens.com</u>



